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We studied both the mechanism and the condition of dynamic superlubricity actuated in a dynamic way for
the atomic contact of a friction force microscope, using dynamical simulation of the Tomlinson model. The
superlubricity was achieved by ac modulation of the normal force acting between two contacting bodies at
well-defined frequencies corresponding to normal resonances of the combined system �A. Socoliuc et al.,
Science 313, 207 �2006��. The time-averaged friction force depends crucially on the modulation amplitude and
the superlubricity occurs above the critical amplitude. The effect on the superlubricity of the corrugation
amplitude of surface potential, sliding velocity, a damping coefficient, and temperature are clarified. The
superlubricity at zero temperature can be induced by transit of the tip via the “turning point,” the top position
of the surface potential without elastic deformation, and it is allowed at low-sliding velocities in the under-
damped case. The superlubricity at a room temperature can be actuated efficiently with a much smaller critical
amplitude than that at zero temperature and it can be achieved at sufficiently low-sliding velocities in both the
underdamped and the overdamped cases, assisted by thermally activated hopping of the tip.
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I. INTRODUCTION

Scientists and engineers have long been intrigued by the
phenomena of friction and a friction force microscope �FFM�
was developed as a new ideal experimental method to detect
friction on the atomic scale. Mate et al. reported the first
observation of a stick-slip movement of the tip with atomic
periodicity of the sample surface structure.1 The energy is
dissipated at the abrupt slip and, hence, the stick-slip motion
is the origin of friction on the atomic scale. The stick-slip
motion is suppressed and continuous sliding occurs without
energy dissipation, when the corrugation amplitude of the
surface potential is decreased below a critical threshold.

Several ways to reduce friction have been proposed and
sliding with negligible friction is called as superlubricity.2

When two surfaces in contact are laterally stiff and incom-
mensurate, superlubricity appears since the effective corru-
gation of the surface potential can be reduced less than the
threshold. Indeed, Dienwiebel et al. have observed superlu-
bricity while turning a graphite flake out of registry over a
graphite surface.3 Recently, we also demonstrated superlu-
bricity at the magic size for multiatomic contacts with sur-
face in the lattice-mismatched case.4 The corrugation ampli-
tude of surface potential can also be reduced by decreasing
normal load acting on the tip.5 On the other hand, friction at
a finite temperature can be reduced as the sliding speed is
decreased.6,7 Thermally activated jumps of the tip are en-
hanced at low-sliding velocity and this superlubricity is
called as thermolubricity.

Recently, atomic scale control of friction has also been
tried by actuation of nanometer-sized contacts. Riedo et al.
tried torsional oscillation of the cantilever.8 The average fric-
tion force was found to be resonantly reduced by superim-
posing torsional oscillation on a cantilever at low-scan ve-
locity, while no resonant reduction was observed at high-
scan velocity. They ascribed the observed resonant reduction
to activation of oscillation of the tip at the stick point. So-
coliuc et al., on the other hand, succeeded in achieving su-

perlubricity in a dynamic way by exciting the mechanical
resonances of the sliding system perpendicular to the contact
plane.9 They attributed the resonant reduction to the induced
dynamical modulation of corrugation amplitude of the sur-
face potential and predicted the critical amplitude using the
adiabatic approximation. Very recently, the dynamic superlu-
bricity offered a way to avoid the wear of tiny silicon tips in
the “write-read” action of data storage.10

A number of experimental results obtained by a friction
force microscope have been explained successfully by a
Tomlinson model,11 in which single spring and an atomic-
scale tip are assumed. The cantilever and the contact of FFM
are thought to act as springs in series and this picture gives
the single spring model with the effective spring constant.
The appearance condition of stick-slip as a function of
load5,8 and the occurrence of slip over multiple lattice
units1,12–16 have been analyzed satisfactorily. Furthermore,
dependence of the atomic friction on the scanning velocity,
V, has also been elucidated by including thermal activation
of the slip motion.7,15,17 Recently, a nonmonotonic depen-
dence of friction on temperature has been observed in FFM
measurement18 and it has been explained by competition be-
tween two factors, thermal activation of the slip motion and
decrease in the slip length with temperature.19 As for the
resonant reduction by torsional oscillation,8 a remarkable re-
duction of the average friction force was shown to occur at
two characteristic oscillation frequencies, with use of com-
puter simulation in the Tomlinson model.20 The first fre-
quency is an oscillation frequency of the tip atom at the stick
point, as suggested by Riedo et al.8 The second frequency is
a sliding frequency, V /a, where a is the lattice constant of
the surface. At this frequency, the tip atom follows synchro-
nous motion with the support point and the slip is brought
forward inducing reduction of the average friction force.

Our aim is to clarify both the atomistic mechanism and
the condition of the dynamic superlubricity of nanometer-
sized contacts observed by Socoliuc et al.9 We used the Tom-
linson model at a finite temperature and used Ermak’s
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algorithm21 to solve the Langevin equation numerically. We
address the dependence of the friction on the corrugation
amplitude of the surface potential, a damping coefficient,
sliding velocity, and temperature.

II. FORMULATION

The total interaction energy in the one-dimensional Tom-
linson model is given as

E�x,R� = − U cos�2�x

a
� +

k

2
�R − x�2, �1�

where x is the coordinate of the tip atom and R is the position
of the support point of FFM. The first term of Eq. �1� is
periodic potential of the substrate with the lattice constant, a,
and the second term is the elastic interaction with an elastic
constant, k, between the tip atom and the support point. We
represent the effect of the normal modulation on the lateral
tip motion by assuming that the corrugation amplitude of the
surface potential changes with time as,9

U�t� = U0�1 + � cos 2�ft� . �2�

When �=0 without ac modulation, the stick-slip motion oc-
curs in the following condition.5,15

� �
4�2U0

ka2 � 1. �3�

When the support point R is scanned at the velocity V, the
dynamics of the tip atom is described by the Langevin
equation,7

mẍ + m�ẋ = −
�E�x,Vt�

�x
+ fr, �4�

where R is set as R=Vt. Here, m is the mass of the tip, � is
the damping coefficient representing the energy dissipation.
fr is a random force that is related to the damping coefficient
� by the fluctuation dissipation theorem.

�fr�t�fr�t��	 = 2m�kBT��t − t�� , �5�

where kB is the Boltzmann constant and T is the absolute
temperature. We used Ermak’s algorithm21 to solve the
Langevin equation numerically. The friction force F�R� of
FFM is given by,

F = k�R − x� . �6�

Hereafter, we take a as the unit of length and ka2 as the
unit of energy. Further, we take m as unity, i.e. the unit of
time is 
m /k. In this unit system of a=1, ka2=1, and m=1,
our system is characterized by four dimensionless param-
eters: the damping coefficient �
m /k, the surface potential
amplitude U0 /ka2, sliding velocity V
m /ka2, and the tem-
perature kBT /ka2. We used mainly following values assumed
by Socoliuc et al.;9 a=0.5 nm, k=1 N /m, fnt=178 kHz, f
=56.7 kHz, and V=10 nm /s. Here, fnt is the resonant fre-
quency of a nanotip, fnt=

1
2�


 k
m . These have dimensionless

values of fnt=0.16, f =0.051, V=1.8�10−5. The unit of
force, ka, becomes 0.5 nN and the unit of energy, ka2, does
1.56 eV. In this unit, a room temperature is T=0.016. The
critical value of the damping coefficient is given by, �cr
=4�fnt, and its dimensionless value is 2. In the latter part of
this paper, we denote these dimensionless parameters simply
as �, U0, T, V and f .

III. NUMERICAL RESULTS

At first, we present in Fig. 1 the time-averaged friction
force �F	 at a room temperature �T=0.016� for the surface

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8���

0 0.2 0.4 0.6 0.8 1α

<F
>
(k
a)

V=0.01
V=0.001

V=0.00002
V=0.0001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8���

0 0.2 0.4 0.6 0.8 1α

<F
>
(k
a)

V=0.01
V=0.001

V=0.00002
V=0.0001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8���

0 0.2 0.4 0.6 0.8 1α

<F
>
(k
a)

V=0.01
V=0.001

V=0.00002
V=0.0001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8���

0 0.2 0.4 0.6 0.8 1α

<F
>
(k
a)

V=0.01
V=0.001

V=0.00002
V=0.0001

FIG. 1. The relation between
the time-averaged friction force
�F	 and the oscillation amplitude
� of ac modulation at four sliding
velocities V, for �=3 �a�, 5 �b�, 6
�c�, and 7 �d�. Here, �=2, T
=0.016, f =0.05 are assumed.
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potential amplitude, �=3,5 ,6 ,7, as a function of relative ac
modulation amplitude, �. Here, we assumed �=2, i.e. the
critical damping coefficient. It can be seen in Fig. 1 that �F	
decreases monotonically with increasing � and it vanishes
above the critical value �cr. The value of �cr depends on
both the surface potential corrugation, �, and the sliding ve-
locity, V. If the critical value is determined by Eq. �3� with
use of the minimum corrugation amplitude, U0�1−��, with
ac modulation, as pointed out by Socoliuc et al.,9 �cr can be
predicted as,

�cr
0 = 1 − �−1. �7�

The calculated �cr at a room temperature for V=0.000 02 is
much smaller than this predicted value, because of thermally
activated hopping of the tip. As for the scanning velocity
dependence, �F	 decreases monotonically with decreasing
velocity since the thermally activated hopping is enhanced
by lowering the velocity. In the experiment on NaCl surface
by Socoliuc et al.,9 �F	=0.11 nN was observed at the scan-
ning velocity of V=10 nm /s without ac modulation. This
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FIG. 2. The relation between
the time-averaged friction force
�F	 and the oscillation amplitude
� of ac modulation at four sliding
velocities V, for �=0.4 �a�, 2 �b�, 4
�c�, and 10 �d�. Here, �=6, T
=0.016, f =0.05 are assumed.
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FIG. 3. The relation between the time-averaged friction force �F	 and the oscillation amplitude � of ac modulation at four sliding
velocities V, for �=3 �a�, 5 �b�, 6 �c�, and 7 �d�. Here, �=2, T=0, and f =0.05 are assumed.
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friction force is approximately obtained at �=6 in our simu-
lation at the scan velocity of V=0.000 02. This corresponds
to the corrugation amplitude of the surface potential of U0
=0.24 eV.

Second, we present in Fig. 2 the dependence of the time-
averaged friction force at a room temperature on the damp-
ing coefficient, �, in the case of �=6. It is seen that both �F	
and �cr increase slightly as � increases. It should be men-
tioned that the superlubricity can be observed at V
=0.00002 in the extremely overdamped situation of �=10.

To clarify the finite temperature effects in Figs. 1 and 2,
we present in Figs. 3 and 4 the corresponding dependences
of the time-averaged friction force �F	 at zero temperature.
The observed remarkable velocity dependence of �F	 at a
room temperature vanishes almost completely at T=0 in
low-velocity region below V	0.001 and �F	 becomes much
larger than that at a room temperature, by suppression of
thermally activated hopping. In Fig. 3 where the critical
damping coefficient is assumed, the calculated �cr is a little
larger than the predicted value of Eq. �7�. In the under-
damped case at �=6 in Fig. 4�a�, �cr approaches the pre-
dicted value, �cr

0 =0.83 in low velocities. Socoliuc et al. de-
termined the surface potential amplitude as �=3 from the
observed value of �F	=0.11 nN without ac modulation.9

This suggests that their calculation was performed at T=0. In
high velocities, on the other hand, �F	 depends on the sliding
velocity: �F	 at V=0.01 is larger than those at lower veloci-
ties, except the case of �=0 and �=0.4 in Fig. 4�a�. In this
case, double slips appear as shown in Fig. 6�a� and, hence,
the average friction force can be reduced remarkably.15 With
ac modulation, the average friction force increases with �
and the superlubricity is suppressed for the overdamped case
of ���c in Fig. 4.

Now, we investigate how the dynamic superlubricity ap-
pears and how the damping coefficient, the sliding velocity

and temperature affect the dynamic superlubricity. In Fig. 5,
we plot the relation between the tip coordinate x and the
support point R at T=0 in the underdamped case of �=0.4
and the overdamped case of �=4. Here, �=6, f =0.05, and
V=0.001 are assumed. In the case of �=0, the stick-slip
motion occurs and the slip position does not depend on �.
This means that the average friction force is almost indepen-
dent of the damping coefficient at T=0 in low-sliding veloci-
ties. In the case of �=0.6 with ac modulation, the oscillation
with a frequency f is superimposed at the stick point and the
position of abrupt slip precedes that for �=0 and hence the
average friction force is reduced. In the case of �=0.9, x
changes continuously through x=1.5�2.5� at R=1.5�2.5�
without an abrupt slip for �=0.4, as seen in Fig. 5�a� and the
dynamic superlubricity is actuated. On the other hand, for
�=4, the stick-slip motion survives at �=0.9 with an abrupt
slip and the superlubricity does not occur. In this over-
damped case, the growth rate of the oscillation amplitude of
the tip atom at the stick point is suppressed and the smooth
movement of a tip via the turning point, x=1.5�2.5� at R
=1.5�2.5�, is interrupted. As for the damping coefficient de-
pendence of �F	 with ac modulation, �F	 increases with �,
caused by delay of the slip point. In Fig. 6, we plot the
relation between the tip coordinate x and the support point R
in the case of high velocity of V=0.01 at T=0 for �=0.4 and
4, �=6, f =0.05. In the case of �=0.4, a double slip is in-
duced at �=0 in Fig. 6�a� and the average friction force is
reduced in comparison with that at a lower sliding velocity
of V=0.001. The double slips occur if the tip atom can arrive
at the next nearest local minimum of the total interaction
energy, overcoming the middle energy barrier.15 Hence, the
low-damping coefficient assists in the appearance of double
slips because the energy dissipation is suppressed. The fast
scanning velocity also assists in the appearance of double
slips, since the rapid time variation in E�x ,Vt� lowers the
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FIG. 4. The relation between
the time-averaged friction force
�F	 and the oscillation amplitude
� of ac modulation at four sliding
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�c�, and 10 �d�. Here, �=6, T=0,
and f =0.05 are assumed.
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barrier height and induces instability of the nearest local
minimum. On the other hand, with ac modulation, a single
slip is induced at �=0.6 while a continuous change in a tip
atom position through the turning point, x=1.5�2.5� at R
=1.5�2.5�, can be seen at �=0.9. For �=4 in Fig. 6�b�, the
stick-slip motion survives still at �=0.9 and the superlubric-
ity does not appear. The slip points in Fig. 6�b� are delayed
than those in Fig. 5�b� at V=0.001 and hence �F	 in the case
of �=4 is increased for high-scan velocity.

Here, we consider the modulation frequency dependence
of �F	 at T=0. If f is changed to 0.02 at �=0.9 for V
=0.001 in Fig. 5�a�, the slip points shift only slightly ahead
from the turning points and the calculated result almost over-
laps with one at f =0.05. It results in slight increase in the
average friction force to �F	=0.018 from the vanishing value
at f =0.05. This suggests that �F	 can approach to zero with
decreasing sliding velocities independent on the individual
value of the modulation frequency, i.e., the dynamic super-
lubricity can be allowed at T=0 if the condition of f 
V /a is
satisfied in the underdamped case. In Fig. 6�a� for V=0.01,
on the other hand, the above condition is not well satisfied at
both f =0.05 and f =0.02. However, the dynamic superlubric-
ity occurs at �=0.9 for f =0.05, but the stick-slip motion is
revived for f =0.02, as shown in Fig. 6�a� by the broken line.
It results in a large increase in �F	=0.17 at f =0.02 and the
observed superlubricity at f =0.05 disappears. This indicates
that the observed superlubricity at T=0 for high-sliding ve-
locity is induced by the synchronous motion of the tip with
the support point such as the oscillating tip just passes the
turning point. The synchronous motion is allowed at f
=0.05 but not at f =0.02. Hence, the superlubricity observed
at f =0.05 for V=0.01 disappears at f =0.02. Even if the syn-

chronous motion is not allowed, however, it is possible to
pass the vicinity of the turning point in the underdamped
case if the condition of f 
V /a is satisfied.

In Fig. 7, we plot the relation between the tip coordinate x
and the support point R at a room temperature for �=0.4 and
4, �=6, f =0.05, and V=0.0001. In the case of �=0, stick-
slip motion occurs with a single slip while a thermal fluctua-
tion is superimposed at the stick point. The slip position is a
little earlier for �=0.4 than that for �=4 on average, without
ac modulation. This causes a little smaller time averaged
friction force without ac modulation by decreasing the damp-
ing coefficient. Furthermore, it can be seen that the slip po-
sition is much earlier than that at T=0 �Fig. 5�, induced by
thermally activated hopping. It should be noticed that the
results at T=0 are almost independent on V for V	0.001 in
Figs. 3 and 4. Similarly, the relation between the tip coordi-
nate x and the support point R does not depend on V at T
=0 for V	0.001. In the case of �=0.6 with ac modulation,
on the other hand, the slip point of a tip is brought forward
remarkably for both �=0.4 �Fig. 7�b�� and 4 �Fig. 7�d��, and
the average friction force is reduced dramatically �see Figs.
2�b� and 2�c��. The dynamic superlubricity can be actuated at
a room temperature for �=0.4 at a much reduced ac modu-
lation amplitude of �=0.6 than the predicted value of �cr

0

=0.83 determined from the minimum corrugation amplitude,
U0�1−��, with ac modulation. For the static surface potential
with the corrugation amplitude of U0�1−��, on the other
hand, the average friction force �F	 diminishes at a room
temperature at V=0.0001 for both damping coefficients, �
=0.4 and 4. This suggests that the dynamical superlubricity
at a room temperature is also determined by the minimum
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corrugation amplitude with ac modulation. The enough time
for the thermally activated hopping at the minimum corruga-
tion amplitude can be assured if the condition of f 
V /a is
sufficiently satisfied.

Finally in Fig. 8, we show a part of Figs. 7�a� and 7�c� in
the enlarged scale of R. The thermal excitation of oscillation
of the tip can be seen clearly at the stick point without ac
modulation. The oscillation amplitude is larger for �=0.4
than for �=4, while the thermal noise is much stronger for
�=4 than for �=0.4. Hence, the resultant thermal fluctuation
of the tip position has a similar magnitude at a room tem-
perature insensitive to the value of the damping coefficient,
contrary to the forced oscillation at T=0 of the tip by ac
modulation of the corrugation amplitude.

IV. DISCUSSION AND CONCLUSION

We consider why the tip takes such a motion as shown in
Figs. 5–7. In the adiabatic approximation, the coordinate x of
the tip is assumed to take the local minimum of the total
interaction energy, E�x ,R�, for a given support position R.
The local minimum of E�x ,R� is given by the relation,

R = x +
2�U

ka
sin�2�x

a
� . �8�

In the case of ��1, the tip coordinate x is a monotonic
increasing continuous function of R and the stick-slip motion
of the tip atom does not occur. On the other hand, in the case
of ��1, x becomes a multivalued function of R and a dis-
continuous jump of x is induced at R=Rc. Here, Rc is the
extreme value of R�x� and is given by,

Rc =
a

2�
�arccos� − ka2

�2��2U

 +

�2��2U

ka2 
1 − � ka2

�2��2U

2� .

�9�

We plot the relation of Eq. �8� in Fig. 9, where U is assumed
to be U0�1��� at �=6. If the sliding velocity V is suffi-
ciently low, the tip position x oscillates between x+�R� and
x−�R�, where x��R� is obtained from Eq. �8� with U
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=U0�1���. In the case of ���cr
0 , x−�R� becomes a multi-

valued function of R as the case of �=0.6 in Fig. 9 and the
slip occurs at R=Rc=0.67 at the minimum corrugation am-
plitude with ac modulation, U0�1−��. However, for ���cr

0 ,
x−�R� becomes a single-valued function of R as the case of
�=0.9 in Fig. 9 and the tip is allowed to pass the turning
point of x=R= �n+0.5�a with an integer n. We call this point
as the turning point, since the tip can change continuously
the stick position through the turning point, i.e., the top po-
sition of the surface potential without elastic deformation of
the tip. In the adiabatic approximation, the stick-slip motion
can be suppressed for �
�cr

0 , as predicted by Socoliuc et
al.9 In the dynamical case, however, the oscillation ampli-
tude of the tip at the stick point depends also on the damping
coefficient � and the range of motion of the tip coordinate x
is limited within a smaller range, as seen in Fig. 5�b�. Hence,
the tip atom cannot pass through the turning point even for
���cr

0 with increasing �. Hence, the dynamic superlubricity
does not occur for overdamped case at T=0. However, the
dynamic superlubricity can be actuated easily at a room tem-
perature even for ���cr

0 in both the underdamped and the
overdamped cases, by assistance of thermally activated hop-
ping. Indeed, the slip position at a room temperature is re-
markably brought forward than those at T=0, R=Rc+na
with an integer n, as seen in Figs. 7�b� and 7�d�.

With respect to the condition for appearance of the dy-
namic superlubricity, Socoliuc et al. pointed out following
two conditions.9

fnt 
 f 
 V/a ,

f� � 4�fnt
2 . �10�

The relation of fnt
 f in the first condition in Eq. �10� is
necessary for the tip to follow the oscillation with a fre-
quency of f . The second condition in Eq. �10� means that the
effect of the damping term is much weaker than one of the
spring term in the equation of motion of Eq. �4�. From this
second condition, the relation of ��6.4 is derived for f
=0.05 and fnt=0.16. Indeed, this condition is satisfied for the
underdamped case of �=0.4 and superlubricity is observed at
T=0 in Fig. 4�a�. On the other hand, the superlubricity can
be observed at a room temperature also for the overdamped
cases of �=4 and 10, as seen in Fig. 2. This indicates that the
second condition of Eq. �10� can be relaxed largely at a room
temperature. The elimination of the condition, f��4�fnt

2 ,
means that achieving superlubricity in a dynamic way be-
comes very efficient at a room temperature. However, the
condition of fnt
 f 
V /a must be satisfied to assure the ther-
mally activated hopping in the vicinity of the minimum cor-
rugation amplitude with ac modulation.

In summary, we studied the mechanism of dynamic super-
lubricity of the atomic contact of a friction force microscope,
using the dynamical simulation of the Tomlinson model at a
room temperature. The effect on the dynamic superlubricity
of the corrugation amplitude of surface potential, sliding ve-
locity, a damping coefficient, and temperature are clarified.
The dynamic superlubricity at zero temperature is induced
above the critical amplitude of ac modulation by transit of
the tip via the �turning point,� and it is realized for the un-
derdamped case if the sliding velocity, V, is much lower than
the ac modulation frequency, f , i.e., f 
V /a. The dynamic
superlubricity at a room temperature, on the other hand, can
be actuated efficiently at a much smaller critical amplitude
than that at T=0, assisted by thermally activated hopping. It
can be realized also for the overdamped case, if the condition
of f 
V /a is sufficiently satisfied.
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